Refine Your Search

Topic

Search Results

Technical Paper

Influence of Combustion Efficiency on the Operation of Spark Ignition Engines Fueled with Methane and Hydrogen Investigated in a Quasi-Dimensional Simulation Framework

2018-05-30
2018-37-0012
Within the context of widening application of numerical simulations for shortening engine development times, the present work covers the issue of quasi-dimensional simulation of spark ignition engines. Multi-fuel operation was the main goal of the study, with the analysis of methane and its blends with hydrogen; gasoline was also considered as a reference case. Data recorded on two engines with practically the same geometry, was used for calibrating the model. The first power unit was of commercial derivation for small applications, while the second one featured optical accessibility through the piston crown. The relative difference between the two engines allowed the top-land region crevice to be identified as the major contributor to overall combustion evolution, especially during its late stages.
Technical Paper

On the Entrainment Velocity and Characteristic Length Scales Used for Quasi-Dimensional Turbulent Combustion Modeling in Spark Ignition Engines

2017-09-04
2017-24-0002
Quasi-dimensional modeling is used on a wide scale in engine development, given its potential for saving time and resources compared to experimental investigations. Often it is preferred to more complex CFD codes that are much more computationally intensive. Accuracy is one major issue of quasi-dimensional simulations and for this reason sub-models are continuously developed for improving predictive capabilities. This study considers the use of equivalent fluid velocity and characteristic length scales for simulating the processes of fresh charge entrainment and oxidation behind the flame front. Rather than dividing combustion into three different phases (i.e. laminar kernel, turbulent flame propagation and oxidation near the walls), the concept of turbulent heat and mass transfer is imposed throughout the entire process.
Technical Paper

Experimental Investigations on the Sources of Particulate Emission within a Natural Gas Spark-Ignition Engine

2017-09-04
2017-24-0141
The aim of the present work is to provide further guidance into better understanding the production mechanisms of soot emissions in Spark-Ignition SI engines fueled with compressed natural gas. In particular, extensive experimental investigations were designed with the aim to isolate the contribution of the fuel from that of lubricant oil to particle emissions. This because the common thought is that particulate emerging from the engine derives mainly from fuel, otherwise the contribute of lubricant oil cannot be neglected or underestimated, especially when the fuel itself produces low levels of soot emissions, such as in the case of premixed natural gas. The fuel-derived contribution was studied by analyzing the influence that natural gas composition has on soot emitted from a single cylinder Spark-Ignition (SI) engine. To achieve this purpose, methane/propane mixtures were realized and injected into the intake manifold of a Single-Cylinder SI engine.
Technical Paper

Particle Formation and Emissions in an Optical Small Displacement SI Engine Dual Fueled with CNG DI and Gasoline PFI

2017-09-04
2017-24-0092
Fuel depletion as well as the growing concerns on environmental issues prompt to the use of more eco-friendly fuels. The compressed natural gas (CNG) is considered one of the most promising alternative fuel for engine applications because of the lower emissions. Nevertheless, recent studies highlighted the presence of ultrafine particle emissions at the exhaust of CNG engines. The present study aims to investigate the effect of CNG on particle formation and emissions when it was direct injected and when it was dual fueled with gasoline. In this latter case, the CNG was direct injected and the gasoline port fuel injected. The study was carried out on a transparent single cylinder SI engine in order to investigate the in-cylinder process by real time non-intrusive diagnostics. In-cylinder 2D chemiluminescence measurements from UV to visible were carried out.
Technical Paper

In-Cylinder Soot Formation and Exhaust Particle Emissions in a Small Displacement Spark Ignition Engine Operating with Ethanol Mixed and Dual Fueled with Gasoline

2017-03-28
2017-01-0653
This paper aims to correlate the in-cylinder soot formation and the exhaust particle emissions for different methods of gasoline/ethanol fueling in spark ignition engine. In particular, the engine was fueled with gasoline and ethanol separately and not, in this latter case both blended (E30) and dual fueled (EDF). For E30 the bend was direct injected and for EDF, the ethanol was injected in the combustion chamber and the gasoline into the intake duct. For both the injection configurations, the same percentage of ethanol in gasoline was supplied: 30%v/v. The measurements were carried out at 2000 and 4000 rpm, under full load, and stoichiometric condition, in small single cylinder optical engine. 2D-digital imaging was performed to follow the combustion process with a high spatial and temporal resolution through a full-bore optical piston. The two-color pyrometry was applied for the analysis of the in cylinder soot formation in the combustion chamber.
Technical Paper

Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine

2017-03-28
2017-01-0545
Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
Technical Paper

An Experimental and Numerical Investigation of GDI Spray Impact over Walls at Different Temperatures

2016-04-05
2016-01-0853
Internal combustion engines performance greatly depends on the air-fuel mixture formation and combustion processes. In gasoline direct injection (GDI) engines, in particular, the impact of the liquid spray on the piston or cylinder walls is a key factor, especially if mixture formation occurs under the so-called wall-guided mode. Impact causes droplets rebound and/or deposition of a liquid film (wallfilm). After being rebounded, droplets undergo what is called secondary atomization. The wallfilm may remain of no negligible size, so that fuel vapor rich zones form around it leading to so-called pool-flames (flames placed in the piston pit), hence to unburned hydrocarbons (HC) and particulate matter (PM) formation. A basic study of the spray-wall interaction is here performed by directing a multi-hole GDI spray against a real shape engine piston, possibly heated, under standard air conditions.
Technical Paper

Experimental Analysis of O2 Addition on Engine Performance and Exhaust Emissions from a Small Displacement SI Engine

2016-04-05
2016-01-0697
In this paper, the effect of the oxygen addition on engine performance and exhaust emissions was investigated. The experimental study was carried out in a small single-cylinder PFI SI four-stroke engine. The addition of the 5% vol and 10% vol of oxygen was performed in the intake duct. Typical urban driving operating conditions were investigated. The engine emissions were characterized by means of gaseous analyzers and a smokemeter. Particle size distribution function was measured in the size range from 5.6 to 560 nm by means of an Engine Exhaust Particle Sizer (EEPS). An improvement in terms of engine power output, without BSFC penalty, and HC emissions with oxygen addition was observed at all the investigated operating conditions. On the other hand, NOx and PM emissions increase.
Journal Article

Capturing Cyclic Variability in SI Engine with Group Independent Component Analysis

2015-09-06
2015-24-2415
Data decomposition techniques have become a standard approach for the analysis of 2D imaging data originating from optically accessible internal combustion engines. In particular, the method of Proper Orthogonal Decomposition (POD) has proven to be a valuable tool for the evaluation of cycle-to-cycle variability based on luminous combustion imaging and particle image velocimetry (PIV) measurements. POD basically permits to characterize the dominant structures of the process under consideration. Recently, an alternative procedure based on Independent Component Analysis (ICA) has been introduced in the engine field. Unlike POD, the method of ICA identifies the patterns corresponding to physical processes that are statistically independent. In this work, a Group-ICA approach is applied to 2D cycle-resolved images of the luminosity emitted by the combustion process. The analysis is meant to characterize cyclic variability of a port fuel injection spark ignition (PFI SI) engine.
Technical Paper

Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation

2015-09-06
2015-24-2413
Gasoline direct injection (GDI) allows flexible operation of spark ignition engines for reduced fuel consumption and low pollutants emissions. The choice of the best combination of the different parameters that affect the energy conversion process and the environmental impact of a given engine may either resort to experimental characterizations or to computational fluid dynamics (CFD). Under this perspective, present work is aimed at discussing the assessment of a CFD-optimization (CFD-O) procedure for the highest performance of a GDI engine operated lean under both single and double injection strategies realized during compression. An experimental characterization of a 4-stroke 4-cylinder optically accessible engine, working stratified lean under single injection, is first carried out to collect a set of data necessary for the validation of a properly developed 3D engine model.
Technical Paper

Split Injection in a GDI Engine Under Knock Conditions: An Experimental and Numerical Investigation

2015-09-06
2015-24-2432
Present work investigates both experimentally and numerically the benefits deriving from the use of split injections in increasing the engine power output and reducing the tendency to knock of a gasoline direct injection (GDI) engine. The here considered system is characterized by an optical access to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window placed in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones of the mixture, where undesired self-ignition may occur under some circumstances. Optical data are correlated to in-cylinder pressure oscillations on a cycle resolved basis.
Technical Paper

Effects of Ethanol and Gasoline Blending and Dual Fueling on Engine Performance and Emissions.

2015-09-06
2015-24-2490
Ethanol is the most promising alternative fuel for spark ignition (SI) engines, that is blended with gasoline, typically. Moreover, in the last years great attention is paid to the dual fueling, ethanol and gasoline are injected simultaneously. This paper aims to analyze the better methods, blending or dual fueling in order to best exploit the potential of ethanol in improving engine performance and reducing pollutant emissions. The experimental activity was carried out in a small displacement single cylinder engine, representative of 2-3 wheel vehicle engines or of 3-4 cylinder small displacement automotive engines. It was equipped with a prototype gasoline direct injection (GDI) head. The tests were carried out at 3000, 4000, and 5000 rpm full load. The investigated engine operating conditions are representative of the European homologation urban driving cycle.
Technical Paper

Experimental Analysis of a Gasoline PFI-Methane DI Dual Fuel and an Air Assisted Combustion of a Transparent Small Displacement SI Engine

2015-09-06
2015-24-2459
The use of direct injection (DI) engines allows a more precise control of the air-fuel ratio, an improvement of fuel economy, and a reduction of exhaust emissions thanks to the ultra-lean combustion due to the charge stratification. These effects can be partially obtained also with an optimized Air Direct Injection that permits to increase the turbulence at low speed and load increasing the combustion stability especially in lean condition. In this paper, a gasoline PFI (named G-PFI), gasoline PFI-methane DI dual fuel (named G-MDF) lean combustion were analyzed. The G-MDF configuration was also compared with a gasoline PFI - air DI (named G-A) configuration in order to distinguish the chemical effect of methane from the direct injection physical effect. The tests were carried out in a small displacement PFI/DI SI engine. The experimental investigation was carried out in a transparent small single-cylinder, spark ignition four-stroke engine.
Journal Article

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

2015-04-14
2015-01-0397
The present paper deals with a comprehensive analysis of the knocking phenomenon through experiments and numerical simulations. Conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine. The engine exhibits optical accesses to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones. Optical data are correlated to in-cylinder pressure-based indicated analyses in a cycle resolved approach.
Technical Paper

Experimental Characterization of an Ethanol DI - Gasoline PFI and Gasoline DI - Gasoline PFI Dual Fuel Small Displacement SI Engine

2015-04-14
2015-01-0848
The aim of the paper is the comparison of the performance, gaseous and particle emissions from different injection configurations and fuels. The engine was operated in port fuel injection (PFI), direct injection (DI) and dual fuel (DF). For DF, ethanol DI-gasoline PFI and gasoline DI-gasoline PFI strategies were performed to discern the effect of injection strategy from the effect of the fuel. The experimental activity was carried out in a small displacement single cylinder engine, representative of 2-3 wheel vehicle engines or of 3-4 cylinder small displacement automotive engines. It was equipped with a prototype gasoline direct injection (GDI) head. The tests were carried out at 3000 rpm, 4000 rpm and 5000 rpm full load. The investigated engine operating conditions are representative of the homologation urban driving cycle. The gaseous and particle emissions were measured at the exhaust by means of a gas analyzer and a smoke meter.
Technical Paper

Ethanol Addition Influence on Backfire Phenomena during Kickback in a Spark-Ignition Transparent Small Engine

2014-11-11
2014-32-0093
This paper investigates abnormal combustion during the cranking phase of spark-ignition small engines, specifically the occurrence of backfire at the release of the starter motor during kickback. The research focusses on the influence of fuel composition, mainly in terms of ethanol percentage, on backfire occurrence. Interest in this abnormal combustion is growing due to the increased use of fuels with different chemical-physical properties with respect to gasoline. Moreover, this issue will become even more topical due to the implementation of simple control and fuel supply systems on low cost-engines, which are widely used in developing countries. Experimentation was carried out in an optically accessible engine derived from a 4-stroke spark ignition engine for two-wheel vehicles. The test bench was instrumented and adapted in order to simulate the engine conditions that lead to anomalous ignition in the intake duct (backfire) during the reverse rotation of the engine (kickback).
Technical Paper

Effect of Octane Number Obtained with Different Oxygenated Components on the Engine Performance and Emissions of a Small GDI Engine

2014-11-11
2014-32-0038
Great efforts have been paid to improve engine efficiency as well as to reduce the pollutant emissions. The direct injection allows to improve the engine efficiency; on the other hand, the GDI combustion produces larger particle emissions. The properties of fuels play an important role both on engine performance and pollutant emissions. In particular, great attention was paid to the octane number. Oxygenated compounds allow increasing gasoline's octane number and play an important role in PM emission reduction. In this study was analyzed the effect of fuels with different RON and with ethanol and ethers content. The analysis was performed on a small GDI engine. Two operating conditions, representative of the typical EUDC cycle, were investigated. Both the engine performance and the exhaust emissions were evaluated. The gaseous emissions and particle concentration were measured at the exhaust by means of conventional instruments.
Technical Paper

Investigation of Ethanol-Gasoline Dual Fuel Combustion on the Performance and Exhaust Emissions of a Small SI Engine

2014-10-13
2014-01-2620
The growing concerns over the pollutant emissions as well as the depletion of fossil fuel led to the research of advanced combustion mode and alternative fuels for the reduction both of fuel consumption and exhaust emissions. The dual-fuel injection system can be used to improve the engine performance and reduce the fossil fuel consumption performing simultaneously a direct-injection (DI) and a port-fuel-injection (PFI) of different fuels. Ethanol is one of the most promising alternative fuels for SI engines. It offers high anti-knock quality because of the high octane number; moreover, being an oxygenated fuel is very effective in particle emissions reduction. On the other hand, it is characterized by lower energy density mainly because of the low lower heating value (LHV). The aim of the paper is the investigation of the ethanol-gasoline dual fuel combustion on engine performance and emissions.
Technical Paper

An experimental investigation on combustion and engine performance and emissions of a methane-gasoline dual-fuel optical engine

2014-04-01
2014-01-1329
The use of methane as supplement to liquid fuel is one of the solution proposed for the reduction of the internal combustion engine pollutant emissions. Its intrinsic properties as the high knocking resistance and the low carbon content makes methane the most promising clean fuel. The dual fuel combustion mode allows improving the methane combustion acting mainly on the methane slow burning velocity and allowing lean burn combustion mode. An experimental investigation was carried out to study the methane-gasoline dual fuel combustion. Methane was injected in combustion chamber (DI fuel) while gasoline was injected in the intake manifold (PFI fuel). The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycles engine representative of the most popular two-wheel vehicles in Europe.
Technical Paper

Characterization of Ethanol-Gasoline Blends Combustion processes and Particle Emissions in a GDI/PFI Small Engine

2014-04-01
2014-01-1382
The objective of this paper is the evaluation of the effect of the fuel properties and the comparison of a PFI and GDI injection system on the performances and on particle emission in a Spark Ignition engine. Experimental investigation was carried out in a small single cylinder engine for two wheel vehicles. The engine displacement was 250 cc. It was equipped with a prototype GDI head and also with an injector in the intake manifold. This makes it possible to run the engine both in GDI and PFI configurations. The engine was fuelled with neat gasoline and ethanol, and ethanol/gasoline blends at 10% v/v, 50% v/v and 85% v/v. The engine was equipped of a quartz pressure transducer that was flush-mounted in the region between intake and exhaust valves. Tests were carried out at 3000 rpm and 4000 rpm full load and two different lambda conditions. These engine points were chosen as representative of urban driving conditions.
X